Autonomous Driving High-precision Positioning Market Concept, Technology and Companies

Share this news:

Autonomous Driving High-precision Positioning Market Report, 2018-2019 presents In-depth analysis of Autonomous Driving High-precision Positioning Industry, Concept and Technology, Positioning Chips, Modules and Related Companies and more.

The existing positioning technology falls into outdoor and indoor positioning. Outdoor positioning technology involves traditional satellite positioning, radar positioning, inertial measurement unit (IMU) positioning and cellular mobile network positioning. Indoor positioning technology embraces WLAN positioning, Zigbee positioning, Bluetooth positioning, ultra wideband (UWB) positioning, infrared positioning, computer vision positioning and ultrasonic positioning.
The solution to the problem of knowing where a vehicle is (initial position) and where it is going (target position) is indispensable to autonomous driving. High level of autonomous driving demands centimeter-level positioning technology. High-precision positioning technology, therefore, plays a vital role in L3-above autonomous driving.

Access Complete Research Report of Autonomous Driving High-precision Positioning Market including 160 pages report at https://www.reportsnreports.com/reports/1984683-autonomous-driving-high-precision-positioning-industry-report-2018-2019.html

High-precision positioning technology for autonomous driving is classified by positioning method into the three types as follows:
Signal-based positioning technology such as global navigation satellite system (GNSS), UWB and 5G;
Dead reckoning, an IMU-based technology that reckons current position and direction of a vehicle after learning where it was;
Environmental feature matching, or LiDAR and vision sensor-based positioning, that is, matching features observed with those stored in database to know where the vehicle is and what it looks like.

Among signal-based positioning methods, GNSS and 4G/5G are often used for outdoor positioning, and UWB for the indoor.
Through comparing different positioning technologies, 5G and vehicle body sensor fusion (combining radar, camera, LiDAR and map) are the two optimal solutions for L4/L5 autonomous driving in the densely populated areas.

Satellite positioning, however, is more applicable to sparsely populated places where it is unfitted to build 5G base stations on a large scale.

Sample Copy of Autonomous Driving High-precision Positioning Market Research Report at https://www.reportsnreports.com/contacts/requestsample.aspx?name=1984683

GNSS with a meter-level positioning accuracy falls far short of autonomous driving. The centimeter-level satellite positioning needs correction of GNSS positioning errors caused by ionosphere, which is often done by real time kinematic (RTK), a technology having evolved from a conventional 1+1 or 1+2 system to a wide area differential one. The continuous operational reference station (CORS) built in some cities improves RTK measurement range significantly.

Correcting satellite positioning errors by multiple stationary CORS on the ground is also called ground based augmentation . Qianxun SI has constructed over 2,400 ground based augmentation stations across China as its Beidou-based positioning system has served a total of 190 million users.

Ground based augmentation system (GBAS) offers limited coverage albeit with a high accuracy. The system only works for targets in the coverage of its communication signals which find it hard to reach high altitudes, seas, deserts and mountains, so it misses out a large area. To meet the needs of high-precision positioning on a larger scale, correction parameters collected from CORS are sent to satellites for broadcast, so that user end can be free of inadequate communication capacity. Such a correction method is referred to as satellite based augmentation.

Ground based augmentation system (GBAS) has so many technical defects from limited communication capacity and non-uniform architecture to heavy concurrent load and high maintenance cost that GBAS is bound to be replaced by satellite based augmentation system (SBAS).

Get Discount on this Research Report at https://www.reportsnreports.com/contacts/discount.aspx?name=1984683

Autonomous vehicles need to not only carry sensors like LiDAR but be capable of centimeter-level positioning for self-driving in any scenario. SBAS will be the best choice for L5 autonomous driving for its unique ability to provide rapid global coverage for billions of users at the same time and at an ultralow cost.

Satellite navigation and positioning system is heading to the integration between SBAS and GBAS, between communication and navigation.

Many a company is setting about building SBAS.

The large number of competitors means that users have to bind receiver hardware or some one s SBAS, which goes against the prevalence of high-precision positioning technology in mass market. Sapcorda was thus founded.

Sapcorda
On August 8, 2017, Bosch, Geo++, Mitsubishi Electric and u-blox announced the creation of Sapcorda Services GmbH, a joint venture that will bring high precision GNSS positioning services to mass market applications. Sapcorda will offer globally available GNSS positioning services via internet and satellite broadcast and will enable accurate GNSS positioning at centimeter level. The services are mainly for autonomous vehicle, industrial and consumer markets. The real-time correction data service is delivered in a public and open way and does not bind with receiver hardware or systems.

Sapcorda wants to be a trailblazer providing new-generation intercontinental GNSS correction data services in Europe, America and the rest of the world. Yet the company has not released any information since its inception. It may suffer a setback in multi-party cooperation or may be just engrossed in a big plan.

Direct Purchase of this Research Report at https://www.reportsnreports.com/purchase.aspx?name=1984683

It is imaginable that coordinating its shareholders, Bosch, Mitsubishi Electric and u-blox, all of which are big names in technology world, is almost a tall order.

U-blox focuses on development and sale of GNSS chips and modules, and has more than 5,900 customers in 66 countries. Its unit shipment surged from 4.5 million to 90 million between 2007 and 2017. In OEM market, it is a GPS chip supplier of Mercedes-Benz, BMW, Ferrari, Porsche and Audi among other auto brands. Its latest F9 GNSS technology platform offers mainstream GNSS correction services (processing positioning correction data provided by Qianxun SI), and an open interface to GNSS correction service providers.

Bosch has forayed into most autonomous driving industry chain links, of course, including the key technology, high-precision positioning. Bosch already provides inertial sensors as it did in 2016 when SMI130, a 6-axis inertial motion sensor, was unveiled. As an inertial sensor bellwether, InvenSens has been a long-term sole supplier of motion sensor modules for Apple iPhone. In May 2017, Bosch won orders from Apple to supply the next iPhone with some of its motion sensors, breaking the monopoly of InvenSens.

Bosch also has strong technology competence in the fields of automotive camera, radar and LiDAR, staying ahead of its counterparts in installations of cameras and radars. Its three high-precision positioning solutions are applied to scenarios of highway, city road and long non-GNSS tunnel, respectively:
Automotive camera + radar based positioning technology;
GPS+ correction technology, providing vehicle motion and position sensors (VMPS);
Bosch road feature + HD map based positioning technology.

Contact Info:
Name: Vishal Kalra
Email: Send Email
Organization: ReportsnReports
Website: https://www.reportsnreports.com/reports/1984683-autonomous-driving-high-precision-positioning-industry-report-2018-2019.html

Release ID: 488767

SUBSCRIBE FOR MORE